Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(25): e2300299, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37434063

RESUMEN

Immune checkpoint blockade reaches remarkable clinical responses. However, even in the most favorable cases, half of these patients do not benefit from these therapies in the long term. It is hypothesized that the activation of host immunity by co-delivering peptide antigens, adjuvants, and regulators of the transforming growth factor (TGF)-ß expression using a polyoxazoline (POx)-poly(lactic-co-glycolic) acid (PLGA) nanovaccine, while modulating the tumor-associated macrophages (TAM) function within the tumor microenvironment (TME) and blocking the anti-programmed cell death protein 1 (PD-1) can constitute an alternative approach for cancer immunotherapy. POx-Mannose (Man) nanovaccines generate antigen-specific T-cell responses that control tumor growth to a higher extent than poly(ethylene glycol) (PEG)-Man nanovaccines. This anti-tumor effect induced by the POx-Man nanovaccines is mediated by a CD8+ -T cell-dependent mechanism, in contrast to the PEG-Man nanovaccines. POx-Man nanovaccine combines with pexidartinib, a modulator of the TAM function, restricts the MC38 tumor growth, and synergizes with PD-1 blockade, controlling MC38 and CT26 tumor growth and survival. This data is further validated in the highly aggressive and poorly immunogenic B16F10 melanoma mouse model. Therefore, the synergistic anti-tumor effect induced by the combination of nanovaccines with the inhibition of both TAM- and PD-1-inducing immunosuppression, holds great potential for improving immunotherapy outcomes in solid cancer patients.


Asunto(s)
Melanoma , Macrófagos Asociados a Tumores , Ratones , Animales , Línea Celular Tumoral , Inmunoterapia , Linfocitos T CD8-positivos , Microambiente Tumoral
2.
Antibiotics (Basel) ; 12(4)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37107091

RESUMEN

The golden age of antibiotics for tuberculosis (TB) is marked by its success in the 1950s of the last century. However, TB is not under control, and the rise in antibiotic resistance worldwide is a major threat to global health care. Understanding the complex interactions between TB bacilli and their host can inform the rational design of better TB therapeutics, including vaccines, new antibiotics, and host-directed therapies. We recently demonstrated that the modulation of cystatin C in human macrophages via RNA silencing improved the anti-mycobacterial immune responses to Mycobacterium tuberculosis infection. Available in vitro transfection methods are not suitable for the clinical translation of host-cell RNA silencing. To overcome this limitation, we developed different RNA delivery systems (DSs) that target human macrophages. Human peripheral blood-derived macrophages and THP1 cells are difficult to transfect using available methods. In this work, a new potential nanomedicine based on chitosan (CS-DS) was efficiently developed to carry a siRNA-targeting cystatin C to the infected macrophage models. Consequently, an effective impact on the intracellular survival/replication of TB bacilli, including drug-resistant clinical strains, was observed. Altogether, these results suggest the potential use of CS-DS in adjunctive therapy for TB in combination or not with antibiotics.

4.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35980743

RESUMEN

Development of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells. In vivo pharmacological blockade of MCP-1 or molecular knockout of CCR2/CCR4 increased the infiltration of cytotoxic CD8+ T cells and attenuated the immunosuppressive phenotype of the BME as shown by decreased infiltration of Tregs and tumor-associated macrophages/microglia in several models of intracranially injected MBM. These in vivo strategies led to decreased MBM outgrowth and prolonged the overall survival of the mice. Our findings highlight the therapeutic potential of inhibiting interactions between BME and melanoma cells for the treatment of this disease.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Quimiocina CCL2/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Receptores CCR2/metabolismo , Microambiente Tumoral
5.
J Immunother Cancer ; 10(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35863821

RESUMEN

BACKGROUND: Inhibiting programmed cell death protein 1 (PD-1) or PD-ligand 1 (PD-L1) has shown exciting clinical outcomes in diverse human cancers. So far, only monoclonal antibodies are approved as PD-1/PD-L1 inhibitors. While significant clinical outcomes are observed on patients who respond to these therapeutics, a large proportion of the patients do not benefit from the currently available immune checkpoint inhibitors, which strongly emphasize the importance of developing new immunotherapeutic agents. METHODS: In this study, we followed a transdisciplinary approach to discover novel small molecules that can modulate PD-1/PD-L1 interaction. To that end, we employed in silico analyses combined with in vitro, ex vivo, and in vivo experimental studies to assess the ability of novel compounds to modulate PD-1/PD-L1 interaction and enhance T-cell function. RESULTS: Accordingly, in this study we report the identification of novel small molecules, which like anti-PD-L1/PD-1 antibodies, can stimulate human adaptive immune responses. Unlike these biological compounds, our newly-identified small molecules enabled an extensive infiltration of T lymphocytes into three-dimensional solid tumor models, and the recruitment of cytotoxic T lymphocytes to the tumor microenvironment in vivo, unveiling a unique potential to transform cancer immunotherapy. CONCLUSIONS: We identified a new promising family of small-molecule candidates that regulate the PD-L1/PD-1 signaling pathway, promoting an extensive infiltration of effector CD8 T cells to the tumor microenvironment.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1/metabolismo , Humanos , Ligandos , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral
7.
Drug Deliv Transl Res ; 12(3): 500-525, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34302274

RESUMEN

The field of nanomedicine has significantly influenced research areas such as drug delivery, diagnostics, theranostics, and regenerative medicine; however, the further development of this field will face significant challenges at the regulatory level if related guidance remains unclear and unconsolidated. This review describes those features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development. These include identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters, and adequate pre-clinical models. Additional concerns include the evaluation of batch-to-batch consistency and considerations regarding scaling up that will ensure a successful reproducible manufacturing process. Furthermore, we advise close collaboration with regulatory agencies from the early stages of development to assure an aligned position to accelerate the development of future nanomedicines.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina , Nanomedicina/métodos , Preparaciones Farmacéuticas , Medicina Regenerativa , Proyectos de Investigación
8.
Pharmaceutics ; 13(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34575445

RESUMEN

In current times, DNA vaccines are seen as a promising approach to treat and prevent diseases, such as virus infections and cancer. Aiming at the production of a functional and effective plasmid DNA (pDNA) delivery system, four chitosan polymers, differing in the molecular weight, were studied using the design of experiments (DoE) tool. These gene delivery systems were formulated by ionotropic gelation and exploring the chitosan and TPP concentrations as DoE inputs to maximize the nanoparticle positive charge and minimize their size and polydispersity index (PDI) as DoE outputs. The obtained linear and quadratic models were statistically significant (p-value < 0.05) and non-significant lack of fit, with suitable coefficient of determination and the respective optimal points successfully validated. Furthermore, morphology, stability and cytotoxicity assays were performed to evaluate the endurance of these systems over time and their further potential for future in vitro studies. The subsequent optimization process was successful achieved for the delivery systems based on the four chitosan polymers, in which the smallest particle size was obtained for the carrier containing the 5 kDa chitosan (~82 nm), while the nanosystem prepared with the high molecular weight (HMW) chitosan displayed the highest zeta potential (~+26.8 mV). Delivery systems were stable in the formulation buffer after a month and did not exhibit toxicity for the cells. In this sense, DoE revealed to be a powerful tool to explore and tailor the characteristics of chitosan/pDNA nanosystems significantly contributing to unraveling an optimum carrier for advancing the DNA vaccines delivery field.

9.
Adv Healthc Mater ; 10(16): e2100598, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34121366

RESUMEN

Selenium (Se) is an essential element to human health that can be obtained in nature through several sources. In the human body, it is incorporated into selenocysteine, an amino acid used to synthesize several selenoproteins, which have an active center usually dependent on the presence of Se. Although Se shows several beneficial properties in human health, it has also a narrow therapeutic window, and therefore the excessive intake of inorganic and organic Se-based compounds often leads to toxicity. Nanoparticles based on Se (SeNPs) are less toxic than inorganic and organic Se. They are both biocompatible and capable of effectively delivering combinations of payloads to specific cells following their functionalization with active targeting ligands. Herein, the main origin of Se intake, its role on the human body, and its primary biomedical applications are revised. Particular focus will be given to the main therapeutic targets that are explored for SeNPs in cancer therapies, discussing the different functionalization methodologies used to improve SeNPs stability, while enabling the extensive delivery of drug-loaded SeNP to tumor sites, thus avoiding off-target effects.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Selenio , Humanos
11.
Adv Drug Deliv Rev ; 172: 148-182, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711401

RESUMEN

The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Nanopartículas , Neoplasias/terapia , Adyuvantes Inmunológicos/administración & dosificación , Animales , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Humanos , Inmunoterapia/métodos , Terapia Molecular Dirigida , Nanotecnología , Neoplasias/inmunología
12.
Nat Nanotechnol ; 15(8): 630-645, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32661375

RESUMEN

The coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The long incubation period of this new virus, which is mostly asymptomatic yet contagious, is a key reason for its rapid spread across the world. Currently, there is no worldwide-approved treatment for COVID-19. Therefore, the clinical and scientific communities have joint efforts to reduce the severe impact of the outbreak. Research on previous emerging infectious diseases have created valuable knowledge that is being exploited for drug repurposing and accelerated vaccine development. Nevertheless, it is important to generate knowledge on SARS-CoV-2 mechanisms of infection and its impact on host immunity, to guide the design of COVID-19 specific therapeutics and vaccines suitable for mass immunization. Nanoscale delivery systems are expected to play a paramount role in the success of these prophylactic and therapeutic approaches. This Review provides an overview of SARS-CoV-2 pathogenesis and examines immune-mediated approaches currently explored for COVID-19 treatments, with an emphasis on nanotechnological tools.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/uso terapéutico , Betacoronavirus/patogenicidad , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Vacunas Virales/inmunología
13.
Medchemcomm ; 10(10): 1810-1818, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31814954

RESUMEN

Programmed cell death protein 1 (PD-1) and PD-ligand 1 (PD-L1) interaction plays an important role in cancer immunotherapy. Several PD-1/PD-L1 inhibitors have been approved with remarkable impact on overall patient survival rates. Inhibitors in clinical practice are presently limited to monoclonal antibodies. However, their severe shortcomings expose the need for a new generation of PD-L1 inhibitors. Understanding the tumor microenvironment, identifying specific biomarkers and X-ray crystalline structures of PD-1/PD-L1 complexes, including molecular and genomic signature studies are essential to determine the success for the development of PD-1/PD-L1 inhibitors into safer and efficient cancer immunotherapeutics. Currently, the development of immune-modulatory small molecules is being explored due to their benefits over recombinant protein approaches. Nevertheless, their development is hampered in part due to lack of structural information. The current study builds on PD-L1 small-molecule inhibitor structural information and provides insights into the design of new inhibitors. To this end, a comprehensive analysis of crystallographic structures and benchmarking studies were performed, showing the specific structure model and software best suited to study PD-L1. The use of in silico methodologies can give a deeper insight to guide the design of novel PD-L1 small-molecule inhibitors.

14.
Nat Nanotechnol ; 14(9): 891-901, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31384037

RESUMEN

A low response rate, acquired resistance and severe side effects have limited the clinical outcomes of immune checkpoint therapy. Here, we show that combining cancer nanovaccines with an anti-PD-1 antibody (αPD-1) for immunosuppression blockade and an anti-OX40 antibody (αOX40) for effector T-cell stimulation, expansion and survival can potentiate the efficacy of melanoma therapy. Prophylactic and therapeutic combination regimens of dendritic cell-targeted mannosylated nanovaccines with αPD-1/αOX40 demonstrate a synergism that stimulates T-cell infiltration into tumours at early treatment stages. However, this treatment at the therapeutic regimen does not result in an enhanced inhibition of tumour growth compared to αPD-1/αOX40 alone and is accompanied by an increased infiltration of myeloid-derived suppressor cells in tumours. Combining the double therapy with ibrutinib, a myeloid-derived suppressor cell inhibitor, leads to a remarkable tumour remission and prolonged survival in melanoma-bearing mice. The synergy between the mannosylated nanovaccines, ibrutinib and αPD-1/αOX40 provides essential insights to devise alternative regimens to improve the efficacy of immune checkpoint modulators in solid tumours by regulating the endogenous immune response.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Portadores de Fármacos/química , Manosa/química , Melanoma/terapia , Nanopartículas/química , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Inmunización , Masculino , Melanoma/inmunología , Ratones , Ratones Endogámicos C57BL , Microambiente Tumoral
16.
J Control Release ; 307: 108-138, 2019 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-31226355

RESUMEN

Colorectal cancer (CRC) is among the five most commonly diagnosed cancers worldwide, constituting 6% of all cancers and the third leading cause of cancer death. CRC is the third and second most frequent cancer in men and women worldwide, accounting for 14% and 13% of all cancer incidence rates, respectively. CRC incidence is decreasing in older populations, but it has been significantly rising worldwide in adolescents and adults younger than 50 years old. Significant advances in the screening methods and surgical procedures have been underlying the reduction of the CRC incidence rate in older populations. However, there is an urgent demand for the development of alternative effective therapeutic options to overcome advanced metastatic CRC, while preventing disease recurrence. This review addresses the immune and CRC biology, summarizing the recent advances on the immune and/or therapeutic regimens currently in clinical use. We will focus on the emerging role of nanotechnology in the development of combinational therapies targeting and thereby regulating the function of the major players in CRC progression and immune evasion.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Colorrectales/terapia , Inmunoterapia , Nanotecnología , Animales , Neoplasias Colorrectales/inmunología , Humanos
17.
Front Immunol ; 10: 863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31073301

RESUMEN

Dendritic cells (DC) are unrivaled in their potential to prime naive T cells by presenting antigen and providing costimulation. DC are furthermore believed to decode antigen context by virtue of pattern recognition receptors and to polarize T cells through cytokine secretion toward distinct effector functions. Diverse polarized T helper (TH) cells have been explored in great detail. In contrast, studies of instructing DC have to date largely been restricted to in vitro settings or adoptively transferred DC. Here we report efforts to unravel the DC response to cognate T cell encounter in antigen-challenged lymph nodes (LN). Mice engrafted with antigen-specific T cells were immunized with nanoparticles (NP) entrapping adjuvants and absorbed with antigen to study the immediate DC response to T cell encounter using bulk and single cell RNA-seq profiling. NP induced robust antigen-specific TH1 cell responses with minimal bystander activation. Fluorescent-labeled NP allowed identification of antigen-carrying DC and focus on transcriptional changes in DC that encounter T cells. Our results support the existence of a bi-directional crosstalk between DC and T cells that promotes TH1 responses, including involvement of the ubiquitin-like molecule Isg15 that merits further study.


Asunto(s)
Comunicación Celular/inmunología , Células Dendríticas/inmunología , Ganglios Linfáticos/inmunología , Células TH1/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Presentación de Antígeno/inmunología , Antígenos , Citocinas/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL
18.
J Med Chem ; 61(24): 10957-10975, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30020783

RESUMEN

The modulation of immune checkpoint receptors has been one of the most successful, exciting, and explored approaches for cancer immunotherapy. Currently, several immune checkpoint modulators, mainly monoclonal antibodies, are showing remarkable results. However, the failure to show a response in most patients and the induction of severe immune-related adverse effects are the major drawbacks. Novel approaches concerning the development of immune modulatory small molecules have emerged as an alternative. Nevertheless, the lack of structural information about immune checkpoint receptors has hindered the rational design of those small-molecule modulators by preventing the use of methodologies such as computer-aided drug design. Herein, we provide an overview and critical analysis of the structural and dynamic details of immune checkpoint receptors (cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and glucocorticoid-induced TNFR-related protein (GITR)) and their interaction with known modulators. This knowledge is essential to advance the understanding of their binding mode and guide the design of novel effective targeted anticancer medicines.


Asunto(s)
Antígeno CTLA-4/química , Proteína Relacionada con TNFR Inducida por Glucocorticoide/química , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/química , Sitios de Unión , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Proteína Relacionada con TNFR Inducida por Glucocorticoide/inmunología , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Relación Estructura-Actividad
19.
Drug Deliv ; 25(1): 961-972, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29667444

RESUMEN

Development of RNA interference-based therapies with appropriate therapeutic window remains a challenge for advanced cancers. Because cancer stem cells (CSC) are responsible of sustaining the metastatic spread of the disease to distal organs and the progressive gain of resistance of advanced cancers, new anticancer therapies should be validated specifically for this subpopulation of cells. A new amphihilic-based gene delivery system that combines Pluronic® F127 micelles with polyplexes spontaneously formed by electrostatic interaction between anionic siRNA and cationic polyethylenimine (PEI) 10K, was designed (PM). Resultant PM gather the requirements for an efficient and safe transport of siRNA in terms of its physicochemical characteristics, internalization capacity, toxicity profile and silencing efficacy. PM were loaded with a siRNA against AKT2, an important oncogene involved in breast cancer tumorigenesis, with a special role in CSC malignancy. Efficacy of siAKT2-PM was validated in CSC isolated from two breast cancer cell lines: MCF-7 and Triple Negative MDA-MB-231 corresponding to an aggressive subtype of breast cancer. In both cases, we observed significant reduction on cell invasion capacity and strong inhibition of mammosphere formation after treatment. These results prompt AKT2 inhibition as a powerful therapeutic target against CSC and pave the way to the appearance of more effective nanomedicine-based gene therapies aimed to prevent CSC-related tumor recurrence.


Asunto(s)
Antineoplásicos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Polímeros/química , Proteínas Proto-Oncogénicas c-akt/genética , ARN Interferente Pequeño/genética , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Femenino , Técnicas de Transferencia de Gen , Humanos , Células MCF-7 , Micelas , Nanomedicina/métodos , Poloxámero/química , Polietileneimina/química , Interferencia de ARN/efectos de los fármacos
20.
Nanomedicine ; 14(3): 835-847, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29306001

RESUMEN

Nanoparticulate vaccines are promising tools to overcome cancer immune evasion. However, a deeper understanding on nanoparticle-immune cell interactions and treatments regime is required for optimal efficacy. We provide a comprehensive study of treatment schedules and mode of antigen-association to nanovaccines on the modulation of T cell immunity in vivo, under steady-state and tumor-bearing mice. The coordinated delivery of antigen and two adjuvants (Monophosphoryl lipid A, oligodeoxynucleotide cytosine-phosphate-guanine motifs (CpG)) by nanoparticles was crucial for dendritic cell activation. A single vaccination dictated a 3-fold increase on cytotoxic memory-T cells and raised antigen-specific immune responses against B16.M05 melanoma. It generated at least a 5-fold increase on IFN-γ cytokine production, and presented over 50% higher lymphocyte count in the tumor microenvironment, compared to the control. The number of lymphocytes at the tumor site doubled with triple immunization. This lymphocyte infiltration pattern was confirmed in mammary huHER2 carcinoma, with significant tumor reduction.


Asunto(s)
Neoplasias de la Mama/prevención & control , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/administración & dosificación , Carcinogénesis/efectos de los fármacos , Nanopartículas/administración & dosificación , Linfocitos T Citotóxicos/inmunología , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Vacunas contra el Cáncer/química , Carcinogénesis/metabolismo , Carcinogénesis/patología , Femenino , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...